Wider melt zones likely to become more common on GIS…

New paper discusses the combined role of temperature changes and increased forest fires for Greenland ice sheet melt…

Greenland Ice Sheet Melt Could Occur Yearly By 2100 (via Climate Central)

By Brian Kahn Follow @blkahn In July 2012, Greenland ice sheet watchers sounded the alarm as 97 percent of the ice sheet surface melted. It was a rare occurrence, one that left researchers puzzling over the exact causes and the likelihood it could occur…

Continue reading “Wider melt zones likely to become more common on GIS…”

A Cryoconite Bibliography

Below is a bibliography of cryoconite literature that may help those looking for material in this field. I will endeavour to regularly update this with omissions and new work! If you are a cryoconite researcher/enthusiast and you notice anything I’ve missed, please let me know so I can make this as complete as possible!

Cryoconite - seemingly inocuous but the focus of much research!
Cryoconite – the focus of much research!


Abyzov, S.S. 1993. Microorganisms in Antarctic ice. In Antarctic Microbiology, Friedmann, E.I (ed) Princeton University Press, Princeton, NJ, USA: 265-295

Adhikary, S., Nakawo, M., Seko, K., Shakya, B. 2000. Dust influence on the melting process of glacier ice: experimental results from Lirung Glacier, Nepal Himalayas. In Nakawo, M., Raymond, C.F. and Fountain, A (eds). Debris-covered glaciers. Proceedings of an International Association of Hydrological Sciences Workshop, Seattle, Wallingford, AHS Publication 264, 43-52

Agassiz, L. 1846. Systeme Glaciere: ou recherches sur les glaciers leur mécanisme, leur ancienne extension et le rôle qu’ils ont joué dans l’histoire de la terre. Paris, Victor Masson

Ahlmann, H.W. 1942. Researches on snow and ice. The Geographical Journal, 107 (1-2): 11-25

Anesio, A.M., Laybourn-Parry, J. 2011. Glaciers and ice sheets as a biome. Trends in Ecology and Evolution, 27 (4): 219-225

Anesio, A.M., Mindl, B., Laybourn-Parry, J., Hodson, A.J., Sattler, B. 2007. Viral dynamics in cryoconite on a high Arctic glacier (Svalbard). Journal of Geophysical Research, 112 (G4): G04S31

Anesio, A.M., Hodson, A.J., Fritz, A., Psenner, R., Sattler, B. 2009. High microbial activity on glaciers: importance to the global carbon cycle. Global Change Biology, 15(4): 955-960

Anesio, A.M., and 6 others. 2010. Carbon fluxes through bacterial communities on glacier surfaces. Annals of Glaciology, 51 (56): 32-40

Anesio, A.M., Sattler, B., Foreman, C., Telling, J., Hodson, A., Tranter, M., Psenner, R. 2010. Carbon fluxes through bacterial communities on glacier surfaces. Annals of Glaciology, 51 (56): 32-40

Aoki, T., Kuchiki, K., Niwano, M., Matoba, S., Uetake, J. 2013. Numerical simulation of spectral albedos of glacier surfaces covered with glacial microbes in Northwestern Greenland. Radiation Processes in the Atmosphere and Ocean, AIP Conference Proceedings, 1531, 176-179

Arbona, V., Argamasilla, R., Gomez-Cadenas, A. 2010. Common and divergent physiological, hormonal and metabolic responses of Arabidopsis thaliana and Thellungiella halophila to water and salt stress. Journal of Plant Physiology, 167: 1342-1350

Bagshaw, E.A., Tranter, M., Fountain, A.G., Welch, K.A., Basagic, H., Lyons, W.B. 2007. Biogeochemical evolution of cryoconite holes on Canada Glacier, Taylor Valley, Antarctica. Journal of geophysical Research, 112 (G04S32), doi: 10.1029/2006JG000350

Bagshaw, E.A., Tranter, M., Fountain, A.G., Welch, K., Basagic, H.J., Lyons, W.B. 2013. Do cryoconite holes have the potential to be significant sources of C, N and P to downstream depauperate ecosystems of Taylor Valley, Antarctica? Arctic, Antarctic and Alpine Research, 45 (4): 1-15

Barkstrom, B.R. 1972. Some effects of multiple scattering on the distribution of solar radiation in snow and ice. Journal of Glaciology, 11 (63): 357-368

Battin, T.J., Wille, A., Sattler, B., Psenner, R. 2001. Phylogenetic and functional heterogeneity of sediment biofilms along environmental gradients in a glacial stream, Applied and Environmental Microbiology, 67, 799 – 807.

Bayley, W.S. 1891. Mineralogy and Petrography. The American Naturalist, 25 (290): 138-146

Bellas, C., Anesio, A.M. 2013. High diversity and potential origins of T4-type bacteriophages on the surface of Arctic glaciers. Extremophiles,17: 861-870

Bellas, C.M., Anesio, A.M.B., Telling, J., Stibal, M., Tranter, M., Davis, S.A. 2013. Viral impacts on bacterial communities in Arctic cryoconite. Environmental Research Letters, vol 8.

Bøggild, C.F. 2011. Modeling the temporal glacier ice surface albedo based on observations of aerosol accumulation. American Geophysical Union, Fall Meeting 2011, abstract #C41F-04

Bøggild, C.F., Brandt, R.E., Brown, K.J., Warren, S.G. 2010. The ablation zone in northeast Greenland: ice types, albedos and impurities. Journal of Glaciology, 56: 101-113

Bolsenga, S.J. 1977. Preliminary observations on the daily variation of ice albedo. Journal of Glaciology, 18 (80): 517-521

Bowman,  J.P., McCammon, S.A., Brown, M,., Nichols, D.S., McMeekin, T.A. 1997. Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl. Environ. Microbiol. 63 (8): 3068-3078

Box, J.E., Fettweis, X., Stroeve, J.C., Tedesco, M., Hall, D.K., Streffen, K. 2012. Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers. The Cryosphere, 6: 821-839

Brandt, B. 1931. Uber kryokonit in der Magdalenenbucht in Spitsbergen. Zeitschrift fur Gletscherkunde, 19 (1-3): 125-126

Brandt, R.E., Warren, S.G.1993. Solar-heating rates and temperature profiles in Antarctic snow and ice, Journal of Glaciology, 39: 9910

Brochu, M. 1975. Les trous a cryoconite du glacier Gillman (nord de l’ile d’Ellesmere). Polarforschrung, 45 (1): 32-44

Brunetti, C., George, R.M., Tattini, M., Field, K., Davey, M.P. 2013. Metabolomics in plant environmental physiology. Journal of Experimental Botany, doi:10.1093/jxb/ert244

Buhlmann, E. 2011. Influence of particulate matter on observed albedo reductions on Plaine Morte glacier, Swiss Alps. MSc Thesis, University of Bern, 2011

Bryce, D. 1897. Contributions to the non-marine fauna of Spitsbergen – Part II. Report on the Rotifera. Proceedings of the Zoological Society of London, 1897: 793 – 799

Bryce, D. 1922. On some Rotifera from Spitsbergen. The Oxford University Expedition to Spitsbergen, 1921. Report 16. J. Quekett microscopy club, Series 2, 14 (88): 305-332

Cameron, K., Hodson, A.J., Osborn, M. 2012. Carbon and nitrogen biogeochemical cycling potentials of supraglacial cryoconite communities. Polar Biology, 35: 1375-1393

Cameron, K. a, Hodson, A. J., & Osborn, a M. (2012). Structure and diversity of bacterial, eukaryotic and archaeal communities in glacial cryoconite holes from the Arctic and the Antarctic. FEMS microbiology ecology82(2), 254–67. doi:10.1111/j.1574-6941.2011.01277.x

Cameron, R.E. 1972. Farthest south algae and associated bacteria. phycologia, 11: 133-139

Cameron, R.E., Devaney, J.R. 1970. Antarctic soil algal crust: scanning electron and optical microscope study. Transactions of the American Microscopy Society, 89: 264-273

Carlson, C.A., Bates, N.R., Ducklow, H.W., Hansell, D.A. 1999. Estimation of bacterial respiration and growth efficiency in the Ross Sea, Antarctica. Aquatic Microbial Ecology, 19 (3): 229-244

Canfield, D.E., Green, W.J. 1985. The cycling of nutrients in a closed-basin Antarctic lake. Lake Vanda. Biogeochemistry, 1: 233-256

Castello, J.D., Rogers, S.O., Starmer, W.T., Catranis, C.M., Ma, L., Bachand, G.D., Zhao, Y., Smith, J.E. 1999. Detection of tomato mosaic tobamovirus RNA in ancient glacial ice. Polar Biology, 22:207-212.

Chandler, D. M., Alcock, A.D., Wadham, J.L., Mackie, S.L., Telling, J. Seasonal changes of ice surface characteristics and productivity in the ablation zone of the Greenland Ice Sheet. The Cryosphere Discuss., 8, 1337–1382, 2014

Charlesworth, J.K. 1957. the quaternary era. London, Edward Arnold, 1: 60pp

Cho, S.M., Kang, B.R., Han, S.H., Anderson, A.J., Park, J-Y, Lee, Y-H, Cho, B.H., Yang, K-Y, Ryu, C-M, Kim, Y.C. 2008. 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Molecular Plant-Microbe Interactions 21, 1067-1075.

Christner, B.C., Kvitko, B.H., Reeve, J.N. 2003. Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole. Extremophiles, 7: 177-183

Cook, J. 2012. Microbially mediated carbon fluxes on the surface of glaciers and ice sheets. PhD thesis, University of Sheffield, 30th August, 2012. http://etheses.whiterose.ac.uk/id/eprint/2882

Cook, J., Hodson, A., Telling, J., Anesio, A., Irvine-Fynn, T, Bellas, C. 2010. The mass-area relationship within cryoconite holes and its implications for primary production. Annals of Glaciology, 51 (56): 106-110

Cook, J.M., Hodson, A.J., Anesio, A.M., Hanna, E., Yallop, M., Stibal, M., Telling, J., Huybrechts, P. 2012. An improved estimate of microbially mediated carbon fluxes from the Greenland ice sheet. Journal of Glaciology, 58 (212): 1098-1108

Cutler, P.M., Munro, D.S. 1996. Visible and near infra-red reflectivity during the ablation period on Peyto Glacier, Alberta, Canada, Journal of Glaciology, 42: 333-340

Dancer, S.J., Shears, P., Platt, D.J. 1997.  Isolation and characterization of coliforms from

glacial ice and water in Canada’s high Arctic.  J. Appl. Microbiol. 82:597-609

Dastych, H., Kraus, H., Thaler, K. 2003. Redescription and notes on the biology of the glacier tardigrada Hypsibius klebelsbergi Mihelcic, 1959 (Tardigrada), based on material from the Otzal Alps, Austria. Mitt. Hamb. Zool. Mus. Inst, 100: 73-100

DeSmet, W.H. 1988. Rotifers from Bjornoya (Svalbard) with the description of Cephalodella evabroedi n. sp. And Synchaeta lakowitziana arctica n. subsp. Fauna norv. Series A, 9: 1-18

DeSmet, W.H. 1990. Notes on the monogonont rotifers from submerged mosses collected on Hopen (Svalbard). Fauna norv. Series A, 11: 1-8

DeSmet, W.H. 1993. Report on rotifers from Barentsoya, Svalbard (78’30’N). Fauna norv. Series A, 14: 1-26

DeSmet, W.H., Van Rompu, E.A., Beyens, L. 1988. Contribution to the rotifers and aquatic Tardigrada of Edgeoya (Svalbard). Fauna norv. Series A, 9: 19-30

Drygalski, E. von. 1897. Die Kryokonitlocher. Gronland-expedition der Gesellschaftfur Erdkunde zu Berlin 1891-1893, Bd 1: 93-103

Dyson, J.L. 1963. The world of ice. Crescent Press, London, pp.292

Edwards, A., and 7 others. 2011. Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard. ISME Journal, 51 (1): 150-160

Edwards, A., Rassner, S.M., Anesio, A.M., Worgan, H.J., Irvine-Fynn, T.D.L., Williams, H.W., Sattler, B., Griffith, G.W. 2013a. Contrasts between the cryoconite and ice marginal bacterial communities of Svalbard glaciers. Polar Research, 32: 19468

Edwards, A., Douglas, B., Anesio, A., Rassner, S.M., Irvine-Fynn, T.D.L., Sattler, B., Griffith, G.W. 2013b. A distinctive fungal community inhabiting cryoconite holes on glaciers in Svalbard. Fungal Ecology, 6: 168-176

Edwards, A., Pachebat, J.A., Swain, M., Hegarty, M., Hodson, A., Irvine-Fynn, T.D.L., Rassner, S.M., Sattler, B. 2013c. A metagenomic snapshot of taxonomic and functional diversity in an alpine glacier cryoconite ecosystem. Environmental Research Letters, 8 (035003): 11pp

Edwards, A., Mur, L., Girdwood, S., Anesio, A., Stibal, M., Rassner, S., Hell, K., Pachebat, J., Post, B., Bussell, J., Cameron, S., Griffith, G., Hodson, A. 2014. Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in Alpine and Arctic glaciers. FEMS Microbial Ecology, in press

Edwards, A.E., Irvine-Fynn, T., Mitchell, A.C., Rassner, S.M.E. 2014. A germ theory for glacial systems? WIREs Water 2014, doi: 10.1002/wat2.1029

Etienne, E. 1940. Expeditionsbericht der Gronland-Expedition der Universitat Oxford 1938. Veroff. Des Geophys. Inst. Der Univ. Leipzig, Series II, 8 (reviewed by Ahlmann, H.W. 1940, Geografiska Annaler, 24: 23-50)

Fogg, G.E. 1967. Observations on the snow algae of the South Orkney Islands. Philosophical transactions of the Royal Society London, B Biological Sciences, 252: 279-287

Fogg, G.E. 1998. The Biology of Polar Habitats, Oxford University Press, Oxford, UK.

Foreman, C.M., Sattler, B., Mikuchi, J.A., Porazinska, D.L., Priscu, J.C. 2007. Metabolic activity and diversity of cryoconites in the Taylor Valley, Antarctica. Aquatic Geochemistry, 10: 239-268

Fountain, A.G., Dana, G.L., Lewis, K.J., Vaughn, B.H., McKnight, D. 1998. Glaciers of the McMurdo Dry Valleys, Southern Victoria Land, Antarctica. In Priscu, J.C. (ed) Ecosystem dynamics in a polar desert: the McMurdo dry valleys, Antarctica. 72: 65-75, AGU, Washington DC.

Fountain, A.G., Lyons, W.B., Burkins, M.B., Dana, G.L., Doran, P.T., Lewis, K.J., McKnight, D.M., Moorhead, D.L., Parsons, A.N.,  Priscu, J.C., Wall, D.H., Wharton, R.A., Virginia, R.A. 1999. Physical controls on the Taylor Valley ecosystem, Antarctica. Bioscience, 49 (12): 961-971

Fountain, A.G., Tranter, M., Nylen, T.H., Lewis, K.J., Meuller, D.R. 2004. Evolution of cryoconite holes and their contribution to melt-water runoff from glaciers in the McMurdo Dry Valleys, Antarctica. In Priscu, J.C. (ed) Ecosystem dynamcs in a polar desert: the McMurdo Dry Valleys, Antarctica, Washington, DC: American Geophysical Union, 323-335

Fountain, A.G., Nylen, T.H., Tranter, M., Bagshaw, E. 2008. Temporal variations in physical and chemical features of cryoconite holes on Canada Glacier, McMurdo Dry Valleys, Antarctica. Journal of Glaciology, 50: 35-45

Franzmann, P.D. 1996. Examination of Antarctic prokaryotic diversity through molecular comparisons. Biodiversity Conservation, 5: 1295-1305

Franzmann, P.D., Liu, Y., Balkwill, D.L., Aldrich, H.C., Conway de Marcario, E., Boone, D.R. 1997. Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. Int. J.  Sys. Bacteriol. 47: 1068-1072.

Freitag, S., Hogan, E.J., Crittenden, P.D., Allison, G.G., Thain, S.C. 2011. Alterations in the metabolic fingerprint of Cladonia portentosa in response to atmospheric nitrogen deposition. Physiologia Plantarum, 143 (2): 107-114

Fritsch, F.E. 1917. Freshwater algae. British Antarctic (“Terra Nova”) Expedition, 1910, Natural History Report. British Museum (Natural History): 1 – 16

Fritsen, C.H., Priscu. J.C. 1998. Cyanobacterial assemblages in permanently ice covers on Antarctic lakes: distribution, growth rate, and temperature response of photosynthesis. J. Phycol. 34:587-597.

Fuhrman, J.A., Azam, F. 1980. Bacterioplankton secondary production estimates for coastal waters of British Colombia, Antarctica, and California. Applied Environmental Microbiology, 39 (6): 1085-1095

Fujii, Y. 1977. Field experiment on glacier ablation under a layer of debris cover. Japanese Society of Snow and Ice (Seppyo), 39 (special issue): 20-21

Gajda, R.T. 1958. Cryoconite phenomena on the Greenland ice cap in the Thule area. The Canadian Geographer, 3 (12): 35-44

Garrett, T.J., Verzella, L.L. An evolving history of Arctic aerosols. Bulletin of the American Meteorological Society, 89 (3): 299 – 302

Garric, R.K. 1965. The cryoflora of the pacific northwest. American Journal of Botany, 52: 1-8

Geiger, R. 1961. Das klima der bodennahen luftschicht. Vierte Auflage. Braunsweig, Freidrich Vieweg. Translated as: The climate near the ground. Translated by Scripta Technica, Inc. Cambridge, Mass. Harvard University Press, 1965

Gerdel, R.W., Drouet, F. 1960. The cryoconite of the Thule area, Greenland. Transactions of the American Microscopical Society, 79 (3): 256-272

Gibson, M. 2013. A quantitative investigation into the influence of cryocontie distribution and spatial extent on glacier surface albedo. MSc Thesis, Aberystwyth University, 2013

Goelles, T., Boggild, C.E. 2015. Albedo reduction caused by black carbon and dust accumulation: a quantitative model applied to the western margin of the Greenland Ice Sheet. The Cryosphere Discuss., 9, 1345–1381, 2015 www.the-cryosphere-discuss.net/9/1345/2015/

Graham-Watson, I. 1977. Cryoconite distribution and development on the Gorner glacier. B.A. thesis, Cambridge University, Cambridge, UK

Gribbon, P.W. 1979. Cryoconite holes on Sermikaysak, West Greenland. Journal of Glaciology, 22: 177-181

Grρngaard A., P.J.A. Pugh, and S.J. McInnes. 1999. Tardigrades, and other cryoconite biota on the Greenland ice sheet. Zoologischer Anzeiger (Germany) 238:211-214.

Hallbeck, L. 2009. Microbial processes in glaciers and permafrost: a literature study on microbiology affecting groundwater at ice sheet melting. Microbial Analytics Sweden AB, Swedish Nuclear Fuel and Management Co. October 2009

Hell, K., Edwards, A., Zarsky, J., et al. 2013. The dynamic bacterial communities of a melting High Arctic glacier snowpack. ISME Journal, 7: 1814-1826.

Hittson, T. 2010. Cryoconite evolution and formation on an Arctic glacier surface: a case study and model. MSc Thesis, University Centre in Svalbard

Hobbs, H. 1910. Characteristics of inland-ice of the Arctic regions. Proceedings of the American Philosophical Society, 49 (194): 57-129

Hodson, A.J. 2014. Understanding the dynamics of black carbon and associated contaminants in glacial systems. WIREs Water 2014, 1: 141-149.

Hodson, A.J., Tranter, M. 1999. Contemporary CO2 drawdown by glacial meltwater fluxes from high Arctic Svalbard, Interactions Between the Cryosphere, Climate and Greenhouse Gases (Proceedings of the IUGG 99 Symposium HS2, Birmingham, July 1999). IAHS Publ. 256, 1999

Hodson, A.J., Mumford, P.N., Kohler, J., Wynn, P.M. 2005. The High Arctic glacial ecosystem: new insights from nutrient budgets. Biogeochemistry, 72: 233-256

Hodson, A.J., and 10 others. 2007. A glacier respires: quantifying the distribution and respiration CO2 flux of cryoconite across Arctic supraglacial ecosystem. Journal of Geophysical Research, 112 (G4): G04S36

Hodson, A., Anesio, A.M., Tranter, M., Fountain, A., Osborn, M., Priscu, J., Laybourn-Parry, J., Sattler, B. 2008. Glacial Ecosystems. Ecological monographs, 78 (1): 41-67

Hodson, A., Cameron, K., Boggild, C., Irvine-Fynn. T., Langford, H., Pearce, D., Banwart, S. 2010a. The structure, biological activity and biogeochemistry of cryoconite aggregates upon an Arctic valley glacier: Longyearbreen, Svalbard. Journal of Glaciology, 56 (196): 349-362

Hodson, A.J., Boggild, C., Hanna, E., Huybrechts, P., Langford, H., Cameron, K., Houldsworth, A. 2010b. The cryoconite ecosystem on the Greenland ice sheet. Annals of Glaciology, 51 (56): 123-129

Hodson, A.J., Roberts, T.J., Engvall, A-C., Holmen, K., Mumford, P. 2010c. Glacier ecosystem response to episodic nitrogen enrichment in Svalbard, European High Arctic. Biogeochemistry, 98: 171-184

Hodson, A., Paterson, H., Westwood, K., Cameron, K., Laybourn-Parry, J. 2013. A blue-ice ecosystem on the margins of the East Antarctic ice sheet. Journal of Glaciology, 59 (214): 255-268

Hoffman, P.F., Schrag, D.P. 2000. Snowball Earth. Scientific American, 282: 68-75

Hoffman, P.F., Schrag, D.P. 2002. The snowball Earth hypothesis: testing the limits of global change. Terra Nova, 14: 129-155

Hoffman, P.F., Kaufman, A.J., Halverson, G.P., Schrag, D.P. 1998. A Neoporterozoic snowball Earth. Science, 281: 1342-46

Hoffman, M.J., Fountain,m A.G., Liston, G.E. 2014. Near-surface internal melting: a substantial mass loss on Antarctic Dry Valley glaciers. Journal of Glaciology, 60 (220): 361-374

Hoham, R.W. 1976. The effect of coniferous litter and different snow meltwaters upon the growth of two species of snow algae in axigenic culture. Arctic and Alpine Research, 8: 377-386

Hoham, R.W. 1980. Unicellular chlorophytes – snow algae. In: Cox, E.R (ed). Phyoflagellates. New York: Elsevier, North Holland, 61-84

Hoham, R.W., Blinn, D.W. 1979. Distribution of cryophilic algae in an arid region, the American Southwest. Phycologia, 18: 133-145

Hoham, R.W., Roemer, S.C. 1979. The life history and ecology of the snow algae Chloromonas brevispina comb. Nov. (Chlorophyta, Volvocales). Phycologia18: 55-70

Howard-Williams, C., Vincent,W.F. 1989. Microbial communities in southern Victoria Land streams (Antarctica) I. Photosynthesis. Hydrobiologia, 172: 27-38, 1989.

IPCC. 2013: Summary for Policymakers. In: Climate Change 2013: The Physical Basis. Contribution of Working Group 1 to the fifth assessment Report of the Intergovernmental Panel on Climate Change (Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M (eds)). Cambridge University press, Cambridge, UK and New York, NY, USA.

Irvine-Fynn, T.D.L., Bridge, J.W., Hodson, A.J. 2011. In situ quantification of supraglacial cryoconite morphodynamics using time lapse imaging: an example from Svalbard. Journal of Glaciology, 57 (204): 651-657

Irvine-Fynn, T.D.L., Edwards, A., Newton, S., Langford, H., Rassner, S.M., Telling, J., Anesio, A.M., Hodson, A.J. 2012. Microbial cell budgets of an Arctic glacier surface quantified using flow cytometry. Environmental Microbiology, 14 (11): 2998-3012

Irvine-Fynn, T.D.L., Edwards, A. 2013. A frozen asset: the potential of flow cytometry in constraining the glacial biome. Cytometry, Part A, Communication to the Editor, international Society for Dvancement of Cytometry, doi:10.1002/cyto.a.22411

Jannsens, I., Huybrechts, P. 2000. The treatment of meltwater retardation in mass balance parameterizations of the Greenland Ice Sheet. Annals of Glaciology, 31: 133-140

Jepsen, S.M., E.E. Adams and J.C. Priscu. 2010. Sediment Melt-Migration Dynamics in Perennial Antarctic Lake Ice. Arctic, Antarctic, and Alpine Research, 42: 57-66.

Jilloggek, W.C., Rolfsen, N. 1896. Friedhof Nansen 1861 – 1893. Translated by William Archer, Longmans, green and Co. London, New York and Bombay, 1896.

Jones, H.G. 1999. The ecology of snow-covered systems: a brief overview of nutrient cycling and life in the cold, Hydrological Processes, 13, 2135 – 2147.11

Jorgenson, D., Sorlin, S. 2013. Northscapes: History, technology and the making of northern environments. UBC Press, 2013

Kayastha, R.B., Takeuchi, Y., Nakawo, M., Ageta, Y. 2000. Practical prediction of ice melting beneath various thickness of debris cover on khumbu Glacier, Nepal, using a positive degree-day factor. In: Nakawo, M., Raymond, C.F., Fountain, A. (eds): Debris-Covered Glaciers . Proceedings of the Seattle Workshop, September 2000. IAHS Publ. no. 264

Kayser, 1928. The inland ice in Greenland. Copenhagen, 1: 381-384

Kim, S.J., Shin, S.C., Hong, S.G. 2012. Genome Sequence of Janthinobacterium sp. Strain PAMC 25724, Isolated from Alpine Glacier Cryoconite. Journal of Bacteriology, 194: 2096

Kohshima, S., 1984a. A novel, cold tolerant insect found in a Himalayan glacier. Nature, 310: 225-227

Kohshima, S. 1984b. Living micro-plants in the dirt layer dust of Yala glacier. In: Higuchi, K (ed): Glacial studies in Langtang Valley. Nagoya: Data Centre for Glacier Research, Japanese Society of Snow and Ice Office, 91-97

Kohshima, S. 1985. Patagonian glaciers and insect habitats. In: Nakajima, C (ed): Glaciological Studies in Patagonian Northern Icefield, Data Centre for Glacier Research, Japanese Society of Snow and Ice, Publ. 3: 94-99

Kohshima, S. 1987a. Glacial biology and biotic communities. In: Kawano. S., Connell, J.H., Hidaka, T. (eds), Evolution and Coadaptation in Biotic Communities, Faculty of Science, Kyoto university, 77-92

Kohshima, S. 1987b. Formation of dirt layers and surface dust by micro-plant growth in Yala (Dakspatsen) Glacier, Nepal Himalayas. Bulletin of Glacier Research, 5: 63-68

Kohshima, S. 1989. Glaciological importance of micro-organisms in the surface mud-like materials and dirt layer particles of the Chongce Ice Cap and Gohza Glacier, West Kunlun Mountain, China. Bulletin of Glacier Research, 7: 59-66

Kohshima, S., Seko, K., Yoshimura, Y. 1993. Biotic acceleration of glacier melting in Yala Glacier, Langtang region, Nepal Himalaya. IAHS Publication 218 (Symposium at Kathmandu 1992 – Snow and Glacier Hydrology): 309 – 316

Kohshima, S., Yoshimura, Y., Seko, K., Ohata, T. 1994. Albedo reduction by biotic impurities on a perennial snow patch in the Japan alps. Snow and Ice Covers: Interactions with the Atmosphere and Ecosystems (Proceedings of the Yokohama Symposia, J2 and J5, July 1993. IAHS Publ. 223

Kol, E. 1941. The green snow of Yellowstone National Park. American Journal of Botany, 28: 185-191

Kol, E. 1942. The snow and ice algae of Alaska. Smithsonian Miscellaneous Collections, 101: 1-36

Kol, E. 1968. Kryobiologie: Biologie und limnologie des schnees und eises 1. In: Elster, H.J., Ohle, W (eds). Kryovegetation. Stuttgart: E Schweizerbart’sche Verlagsbuchhandlung (Nagele & Obermiller): 216 pp.

Kol, E. 1969. The red snow of Greenland. II. Acta Botanica Academiae Scientarum Hungaricae, 15 (3-4): 281-289

Kol, E., Eurola, S. 1974. Red snow algae from Spitsbergen. Astarte, 7: 61-66

Kol, E., Flint, E.A. 1968. Kryobiologie. Biologie und limnologie des schnees und eises. I. Kryovegetation. In Thiemann, A (founder), Elster, H.J., Ohle, W (eds)., Die Binnengewsser, 24. Stuttgart: E Schweizerbart’sche Verlagsbuchhandlung, 216pp.

Kol, E., Peterson, J.A. 1976. Cryobiology. In Hope, G.S., Peterson, J.A., Radok, U., Allison, I (eds), The equatorial glaciers of New Guinea: Results from the 1971-1973 Australian Universities expeditions to Irian jaya: Survey, glaciology, meteorology, biology and palaeoenvironments. Rotterdam: Balkema, 81-91

Kozak, K., Polkowska, Z., Ruman, M., Kozioł, K., Namieśnik, J. 2013. Analytical studies on the environmental state of the Svalbard archipelago provide a critical source of information about anthropogenic global impact. Trends in Analytical Chemistry, 50: 107 – 126

Kuhlman, H. 1959. Weather and ablation observations at Sermikavsak in Umanak district. Meddelelser om Gronland, 158 (5): 19-50

Lancaster, N. 2002. Flux of eolian sediment in the McMurdo Dry Valleys, Antarctica: a preliminary assessment. Arctic, Antarctic and Alpine Research, 34: 318-323

Langford, H. 2012. The microstructure, biogeochemistry and aggregation of Arctic cryoconite granules. PhD Thesis, University of Sheffield, 2012

Langford, H., Hodson, A., Banwart, S., Boggild, C. 2010. The microstructure and biogeochemistry of Arctic cryoconite granules. Annals of Glaciology, 51 (56): 87-94

Langford, H., Hodson, A., Banwart, S. 2011. Using FTIR spectroscopy to characterise the soil mineralogy and geochemistry of cryoconite from Aldegondabreen glacier, Svalbard. Applied Geochemistry, 26S206-S209

Langford, H. J., Irvine-Fynn, T. D. L., Edwards, A., Banwart, S. A., and Hodson, A. J.: A spatial investigation of the environmental controls over cryoconite aggregation on Longyearbreen glacier, Svalbard, Biogeosciences Discuss., 11, 3423-3463, doi:10.5194/bgd-11-3423-2014, 2014.

Larose, C., Dommergue, A., Vogel, T. 2013. Microbial nitrogen cycling in Arctoc snowpacks. Environmental Research Letters, 8: 035004 (9pp)

Lee, Y.M., Kim, S-Y., Jung, J., Kim, E.H., Cho, K.H., Schinner, F., Margesin, R., Hong, S.G., Lee, H.K. 2011. Cultured bacterial diversity and human impact on alpine glacier cryoconite. Journal of Microbiology, 49 (3): 355-362

Leslie, A., (1879) The Arctic Voyages of Adolf Erik Nordenskiöld. MacMillan and Co., London, UK, 447 pp.

Light, J.J., Belcher, J.H. 1968. A snow microflora in the Cairngorm Mountains, Scotland. Brit.Phycol.Bull. 3, 471-473

Liljequist, G.H. 1956. Energy exchange of an Antarctic snow field. Shortwave radiation (Maudheim, 71ᵒ03’ S, 10ᵒ56’W). Norwegian-British-Swedish-Antarctic Expedition, 1949-1952. Scientific Results, 2 (part 1A)

Ling, H.U., Seppelt, R.D. 1990. Snow algae of the Windmill Islands, continental Antarctica. Mesotaenium berggrenii (Zygnematales, Chlorophyta) an alga of grey snow. Antarctic Science, 2: 143-148

Lizotte, M.P., T.R. Sharp and J.C. Priscu. 1996. Phytoplankton dynamics in the stratified water column of Lake Bonney, Antarctica I. Biomass and productivity during the winter-spring transition. Polar, 16, 155-162, 1996.

Ma, L.J., Catranis, C., Starmer, W.T., Rogers, S.O.1999. Revival and characterisation of fungi from ancient polar ice. Mycologist, 13: 70-73

MacClune, K.L., Fountain, A.G., Kargel, J.S., MacAyeal, D.R. 2003. Glaciers of the McMurdo Dry Valleys: terrestrial analog for Martian polar sublimation. Journal of Geophysical Research, 108 (E4): 5031

MacDonald, R. 1989. Nils Adolf Erik Nordenskiold (1832 – 1901), Arctic Profiles, The Arctic Institute of North America, Calgary, 1989.

MacDonnell, S., Fitzsimons, S. 2008. The formation and hydrological significance of cryoconite holes. Progress in Physical Geography, 32: 595-610

MacDonnell, S., Fitzsimons, S. 2012. Observations of cryoconite hole system processes on an Antarctic glacier. Revista Chilena de Historia Natural, 85: 393-407

Mader, H. 1992. Observations of the water-vein system in polycrystalline ice. Journal of Glaciology, 38: 333-347

Margesin, R., Fell, J.W. 2008. Mrakiella cryoconite gen. nov., sp. Nov., a psychrophilic, anamorphoc, basidiomycetous yeast from alpine and arctic habitats. International Journal of Systematic and Evolutionary Microbiology, 58: 2977-2982

Margesin, R. Haggblom, M,M. 2007. Thematic issue: Microorganisms in cold environments. FEMS Microbiological Ecology 59: 215-216

Margesin, R., Zacke, G., Schinner, F. 2002. Characterization of heterotrophic 14 microorganisms in Alpine glacier cryoconite. Arctic, Antarctic, and Alpine Research, 34, 88-15 93.

Mattson, L.E., Gardner, J.S., Young, G.J. 1993. Ablation on debris covered glaciers: an example from the Rakhiot Glacier, Panjab, Himalaya. In: Young, G.J (ed): Snow and Glacier Hydrology. Proceedings of the Kathmandu Symposium, November 1992., IAHS publ. no. 218: 289-296

McIntyre, N.F. 1984. Cryoconite hole thermodynamics. Canadian Journal of Earth Science, 21: 152-156

McKay, C.P., Stoker, C.R. 1989.  The early environment and its evolution on Mars: implications for life. Rev. Geophys. 27:189-214.

McKnight, D.M., Tate, C.M. 1995. Algal mat distribution in glacial melt water streams in Taylor Valley, Southern Victoria Land, Antarctica, Antarctic Journal  of the U.S., 287-289

Mellor, M. 1977. Engineering properties of snow. Journal of Glaciology, 19 (2): 15-66

Melnikov, I.A. 1997. The Arctic sea ice ecosystem. Amsterdam, Gordon and Breach Sci. Publ., 204p

Menard, H.W. 1950. Transportation of sediment by bubbles. Journal of Sedimentary Petrology, 20 (2): 98-106

Meuller, D.R., Pollard, W.H. 2004. Gradient analysis of cryoconite ecosystems from two polar glaciers. Polar Biology, 27: 66-74

Meuller, D.R., Vincent, W.F., Pollard, W.H., Fritsen, C.H. 2001. Glacial cryoconite ecosystems: a bipolar comparison of algal communities and habitats. Nova Hedwiga Beiheft, 123: 173-197

Mieczen, T., Gorniak, D., Swiatecki, A., Zdanowski, M., Tarkowska-Kukuryk, M., Adamczuk, M. 2013. Vertical microzonation of ciliates in cryoconite holes in Ecology Glacier, King George Island, Polish Polar Research, 34 (2): 201-212

Mills, W.J. 2003. Exploring Polar Frontiers: A historical encyclopedia (Volume 1) ABC-CLIO, 2003

Ming, J., Du, Z., Ziao, C., Xu, X., Zhang, D. 2012. Darkening of the mid-Himalaya glaciers since 2000 and the potential causes. Environmental Research letters, 7 (014021): 13pp

Miteva, V., Rinehold, K., Sowers, T., Sebastian, A., Brenchley, J. 2015. Abundance, viability and diversity of the indigenous microbial populations at different depths of the NEEM Greenland ice core. Polar Research 2015, 34, 25057, http://dx.doi.org/10.3402/polar.v34.25057

Murray, J. 1910. On collecting at Cape Royds. In: Murray, J (ed) British Antarctic Expedition 1907 – 1909 Reports on Scientific Expeditions, Vol.1 Biology, pp 1-15 Heinemann, London

Nagatsuka, N., Takeuchi, N., Nakano, T., Shin, K., Kokado, E. 2014. Geogrphical variations in Sr and Nd isotopic ratios of cryoconite on Asian glaciers. Environmental Research Letters, 9 (045007): 11pp

Nakawo, M., Takahashi, S. 1982. A simplified model for estimating glacier ablation under a debris layer. In: Glen, J.W. (ed): Hydrological aspects of Alpine and High-Mountain Areas. Proceedings of the Exeter Symposium, July 1992), IAHS Publ. no.138: 137-145

Nakawo, M., Young, G.J. 1982. Estimate of glacier ablation under a debris layer from surface temperature and meteorological variables. Journal of Glaciology, 28 (98): 29-34

Nansen, F. 1906. The Norwegian North Polar expedition 1893-1896: Scientific results. Longmans, Green and Co., London, New York and Bombay.

Nobles, L.H. 1960. Glaciological investigations, Nunatarssuaq ice ramp, north west Greenland. United States Army Corps of Engineers, Snow, Ice and Permafrost Research Establishment, Research Report 66.

Noell, A.C., Abbey, W.J., Anderson, R.C., Ponce, A. 2014. Radiocarbon dating of dust layers and soils at Kilimanjiro’s Northern Ice Field. The Holocene, 24 (10): 1398-1408

Nordenskjold, A.E. 1875. Cryoconite found 1870, July 19th-25th, on the inland ice, east of Auleitsivik Fjord, Disco Bay, Greenland; Geol. Mag., Decade 2, 2, 157-162.

Nordenskiöld, A. E., 1883: Nordenskiöld on the inland ice of Greenland. Science, 2, 732–739.

Nordenskiold, A.E., 1888. La Seconde expédition suédoise au Gronland: (l’inlandsis et la côte orientale) : entreprise aux frais de Oscar Dickson / A.-E. Nordenskiold ; traduite du suédois avec l’autorisation de l’auteur parCharles Rabot. Hachette, Paris, 482 pp..

Nordenskiold, E. 1900. Floating stones. Nature, 61: 278

Nordin, A., Schmidt, I.K., Shaver, G.R. 2004.Nitrogen uptake by Arctic soil microbes and plants in relation to soil nitrogen supply. Ecology 85: 955–962

Odell, N.E. 1949. Ice worms in Yukon and Alaska. Nature, 64: 1098

Oerlemans, J; Gleisen, R.H; Van Der Broecke, M.R. 2009. Retreating alpine glaciers: increased melt rates due to accumulation of dust (Vadret da Morteratsch, Switzerland. Journal of Glaciology, 55 (192): 729-736

Olson, J.B., Steppe, T.F., Litaker, R.W., Paerl, J.W. 1998. N2 –fixing microbial consortia associated with the ice cover of Lake Bonney, Antarctica. Microbial Ecology, 36: 231-238

Paerl, H.W., Priscu. J.C. 1998.  Microbial phototrophic, heterotrophic, and diazotrophic activities associated with aggregates in the permanent ice cover of Lake Bonney, Antarctica. Microb. Ecol. 36:221-230.

Paige, R.A. 1968. Sub-surface melt pools in the McMurdo Ice Shelf, Antarctica. Journal of Glaciology, 7: 511-516.

Parker, B.C., Boyer, S., Allnut, F.C.T., Seaburg, K.G., Wharton, R.A., Simmons, G.M. 1982a. Physical, chemical and biological characteristics of soils from the Pensacola Mountains, Antarctica. Soil Biology and Biochemistry, 14: 265-271

Parker, B.C., Simmons, G.M., Seaburg, K.G., Cathey, D., Allnut, F.C.T. 1982b. Comparative ecology of plankton communities in seven Antarctic oasis lakes. Journal of Plankton Research, 4: 271-286

Parker, B.C., Simmons, G.M., Wharton, R.A., Seaburg, K.G., 1982c. Removal of organic and inorganic matter from Antarctic lakes by aerial escape of blue-green algal mats. Journal of Phycology, 18: 72-78

Paultier, B.G., Dubnick, A., Sharp, M., Simpson, A.J., Simpson, M.J. 2013. Comparison of cryoconite organic matter composition from Arctic and Antarctic glaciers at the molecular level. Geochimica et Cosmochimica Acta, 104: 1-18

Pearce, D.A., Bridge, P.D., Hughes, K.A., Sattler, B., Psenner, R., Russell, N.J. 2009. Microorganisms in the atmosphere over Antarctica. FEMS Microbiology Ecology, 69 (2): 143-157

Peary, R.E. 1898. Northward over the ‘Great Ice’: a narrative of life and work along the shores and upon the interior ice cap of Northern Greenland in the years 1886 and 1891-1897, Part 1 – Reconnaissance of the Greenland inland ice, 1886. Cambridge University Press, 1898 (described by Hobbs 1910)

Philipp, H. 1912. Uber die beziehungen der kryokonitlocher zu den Schmelzschalen und ihren Einfluss auf die ablationsverhaltnisse arktische glatscher. Zeitschrift der Geologischen Gesellschaft, 64 (11): 489-505

Podgorny, I.A., Grenfell, T.C. 1996. Absorption of solar energy in a cryoconite hole. Geophysical Research letters, 23: 2465-2468

Pollock, R. 1970. What colours are mountain snow? Sierra Bulletin, 55: 18-20

Porazinska, D.L., Fountain, A.G., Nylen, T.H., Tranter, M., Virginia, R.A., Wall, D.H. 2004. The biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley glaciers, Antarctica. Arctic, Antarctic and Alpine Research, 36: 84-91

Poser, H. 1934. Uber abschmeltzformen aug dem ogstronlondischen packeise und landeise. Zeitschrift fur Gletscherkunde, 21: 1-20

Priscu J.C. 1995. Phytoplankton nutrient deficiency in lakes of the McMurdo Dry Valleys, Antarctica, Freshwater Biology, 34: 215-227.

Priscu, J.C. (ed) 1998. Ecosystem dynamics in a Polar desert: The McMurdo Dry Valleys, Antarctica. AGU, 72: 65-75, AGU, Washington DC

Priscu, J.C. 1999. Life in the valley of the “dead”. Biogeoscience, 49 (12): 959

Priscu, J.C., Christner, B.C. 2004. Earth’s icy biosphere. In Microbial Diversity and Bioprospecting, A Bull (ed), Chapter 13, ASM Press, Washington DC

Priscu, J.C., Fritsen, C.H., Adams, E.E., Giovannoni, S.J., Paerl, H.W., McKay, C.P., Doran, P.T., Gordon, D.A., Lanoil, B.D., Pinckney, J.L. 1998. Perennial Antarctic lake ice: an oasis for life in a polar desert.  Science 280:2095-2098.

Priscu, J.C., Wolf, C.F., Takacs, C.D., Fritsen,  C.H., Laybourn-Parry, J., Roberts, E.C., Berry Lyons, W. 1999a. Carbon transformations in the water column of a perennially ice-covered Antarctic Lake. Bioscience 49:997-1008.

Priscu, J.C., Adams, E.E., Lyons, W.B., Voytek, M.A., Mogk, D.W., Brown, R.L., McKay, C.P., Takacs, C.D., Welch, K.A., Wolf, C.F., Kirschtein, J.D., Avci. R. 1999b. Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286:2141-2144.

Prowse, T.D., Wrona, F.J., Reist, J.D., Gibson, J.J., Hobbie, J.E., Levesque, L.M.J., Vincent, W.F. 2006. Climate change effects on hydroecology of Arctic freshwater ecosystems. AMBIO, 35 (7): 347-358

Psenner, R., Sattler, B., Willie, A., Fritsen, C.H., Priscu, J.C., Felip, M., Catalan, J. 1999. Lake Ice Microbial Communities in Alpine and Antarctic Lakes. p. 17-31. In Schinner, P., Margesin, R. (eds.) Adaptations of Organisms to Cold Environments. Springer-Verlag.

Pugh, P.J.A., McInnes, S.J. 1998. The origin of Arctic terrestrial and freshwater tardigrades. Polar Biology, 19: 177-182

Quesada, A., Vincent, W.F., Lean, D.R.S. 1999. Community and pigment structure of Arctic cyanobacterial assemblages: the occurrence and distribution of UV-absorbing compounds. FEMS Microbial Ecology, 28: 315 – 323

Richters, F. 1911. Faune des mousses. Tardigrades. Duc d’Orleans. Campagne arctique de 1907. Impr. Sci. C. Buelens, Bruxelles: 1-20

Sattler, B., Puxbaum, H., Psenner, R. 2001. Bacterial growth in supercooled cloud droplets. Geophysical Research Letters, 28: 239-242

Sattler, B., Wille, A., Waldhuber, S., Sipiera, P., Psenner, R. 2002. Various ice ecosystems in alpine and polar regions – an overview. Proceedings of the Second European Workshop on Exo/Astrobiology. Graz, Austria, 16-19 September 2002 (ESA SP-518)

Sattler, B., Storrie-Lombardi., M.C., Foreman, C.M., Tilg, M., Psenner, R. 2010. Laser-induced fluorescence emission (LIFE) from lake Fryxell (Antarctica) cryoconites. Annals of Glaciology, 51(56): 145-152

Sauberer, F. 1938. Versuche uber spektrale Messungen der strahlungseigenschaften von schnee und eis mit photoelemen. Meteorologische Zeitschrift, 55 (7): 250-255

Säwström, C., Mumford, P., Marshall, W., Hodson, A., Laybourn-Parry, J. 2002. The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79 degrees N). Polar Biology, 25: 591-596

Säwström, C., Granéli,W., Laybourn-Parry,J., Anesio, A.M. 2007. High viral infection 1 rates in Antarctic and Arctic bacterioplankton. Environmental Microbiology, 9: 250-255.

Scherling, C., Roscher, C., Giavalisco, P., Schultze, E-D., Weckworth, W. 2010. Metabolomics unravel contrasting effects of biodiversity on the performance of individual plant species. PLoS ONE, 5 (9), doi: 10.1371/journal.pone.0012569

Schulze-Makuch, D., Grinspoon, D.H. 2005. Biologically enhanced energy and carbon cycling on Titan? Astrobiology, 5: 560-567

Schuster, C.J. 2001. Weathering crust processes on melting glacier ice (Alberta, Canada). MSc Thesis, Theses and Dissertations (Comprehensive), Wilfred Laurier University, Paper 489

Seaburg, K.G., Parker, B.C., Wharton, R.A., Simmons, G.M. 1981. Temperature-growth responses of algal isolates from Antarctic oasis lakes. Journal of Phycology, 17: 353-360

Segawa, T., Takeuchi, N. 2010. Cyanobacterial communities in Qiyi glacier, Qilian Shan, China. Annals of Glaciology, 51(56): 135-144

Segawa, T., Takeuchi, N., Rivera, A., Yamada, A., Yoshimura, Y., Barcaza, G., Shinbori, K., Motoyama, H., Kohshima, S., Ushida, K. 2013. Distribution of antibiotic resistance genes in glacier environments. Environmental Microbiology Reports, Thematic Issue on Environmental Ecology of Pathogens and Resistances, 5 (1): 127-134

Segawa, T., Ishii, S., Ohte, N., Akiyoshi, A., Yamada, A., Maruyama, F., Li, Z., Hongoh, Y., Takeuchi, N. 2014. The nitrogen cycle in cryoconites: naturally occurring nitrification-denitrification granules on a glacier. Environmental Microbiology (2014) doi:10.1111/1462-2920.12543

Sharp, R.P. 1947. The Wolf Creek Glaciers, St Elias Range, Yukon Territory. The Geographical Review, 37: 26-52

Sharp, R.P. 1949. Studies of superglacial debris on valley glaciers. American Journal of Science, 247: 289-315

Sharp, M., Parkes, J., Cragg, B., Fairchild, I.J., Lamb, H., Tranter, M. 1999. Bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling. Geology, 27: 107-110

Simmons, G.M. Jr., Vestal, J.R., Wharton, R.A. 1993. Environmental regulators of microbial activity in continental  Antarctic lakes, in Physical and Biogeochemical Processes in Antarctic Lakes, Antarctic Research Series., 59, edited by W.J. Green and E.I. Friedmann, pp. 165-195, AGU, Washington, D.C., 1993

Simon, C., Wiezer, A., Strittmatter, A.W., Daniel, R. 2009. Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Applied and Environmental Microbiology, 75 (23): 7519

Singh, P., Singh, S.M. 2012. Characterisation of yeasts and filamentous fungi isolated from cryoconite holes of Svalbard, Arctic. Polar Biology, 35: 575-583

Singh, S.M., Sharma, J., Gawas-Sakhalkar, P., Upadhyay, A.K., Naik, S., Pednecker, S.M., Ravindra, R. 2013. Atmospheric deposition studies of heavy metals in Arctic by comparative analysis of lichens and cryoconite. Environmental Montoring Assessments, 18: 1367-1376

Singh, P., Hanada, Y., Singh, S.M., Tsuda, S. 2014. Antifreeze protein activity in Arctic cryoconite bacteria. FEMS Microbiology Letters, 351: 14-22

Sjöling, S., Cowan, D.A. 2003. High 16S rDNA bacterial diversity in glacial meltwater lake sediment, Bratina Island, Antarctica. Extremophiles, 7: 275 – 282.

Solomon, K.V., Haitjema, C.H., Thompson, D.A., O’Malley, M. 2014. Extracting data from the muck: deriving biological insight from complex microbial communities and non-model organisms with next generation sequencing. Current Opinion in Biotechnology, 28: 103-110

Souchez, R., Janssens, M., Lemmens, M., Stauffer, B. 1995. Very low oxygen concentration in basal ice from Summit, Central Greenland. Geophysical Research Letters, 22:2001-2004.

Souchez,R., Bouzette, A., Clausen, H.B., Johnsen, S.J., Jouzel. J. 1998. A stacked mixing sequence at the base of the Dye 3 core. Geophysical Research Letters, 25:1943-1946.

Steinbock, O. Cryoconite holes and their biological significance. Zeit. f. Gletscherkunde, 24: 1-21

Stibal, M., Sabacka, M., Kastova, K. 2006. Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microbial Ecology, 52 (4): 644-654

Stibal, M., Elster, J., Sabacka, M., Kastovska, K. 2007. Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophycaea) from Svalbard determined by pulse amplitude modulation fluorometry. FEMS Microbial Ecology, 59: 265-273

Stibal, M., Tranter, M. 2007. Laboratory investigations of inorganic carbon uptake by cryoconite debris from Werenskioldbreen, Svalbard. Journal of Geophysical Research, 112 (G4): G04S33

Stibal, M., Tranter, M., Benning, L.G., Rehak, J. 2008a. Microbial primary production on an Arctic glacier is insignificant compared with allochthonous organic carbon input. Environmental Microbiology, 10 (8): 2172-2178

Stibal, M., Tranter, M., Telling, J., Benning, L.G. 2008b. Speciation, phase association and potential bioavailability of phosphorous on a Svalbard glacier. Biogeochemistry, 90: 1-13

Stibal, M., Anesio, A.M., Blues, C.J.D., Tranter, M. 2009. Phosphatase activity and organic phosphorous turnover on a high Arctic glacier. Biogeosciences, 6: 913-922

Stibal, M., Lawson, E.C., Lis, G.P., Mak, K.M., Wadham, J.L., Anesio, A.M. 2010. Organic matter content and quality in supraglacial debris across the ablation zone of the Greenland ice sheet. Annals of Glaciology, 51 (56): 1-8

Stibal, M., Telling, J., Cook, J., Mak, K.M., Hodson, A., Anesio, A.M. 2012a. Environmental controls on microbial abundance on the Greenland ice sheet: a multivariate analysis approach. Microbial Ecology, 63: 74-84

Stibal, M., Baelum, J., Holben, W.E., Sorenson, S.R., Jensen, A., Jacobsen, C.S. 2012b. Microbial degradation of 2,4-Dichlorophenoxyacetic acid on the Greenland ice sheet. Applied and Environmental Microbiology, 78 (15): 5070

Stibal, M., Sabacka, M., Zarsky, J. 2012c. Biological processes on glacier and ice sheet surfaces. Nature Geoscience, 5: 771-774

Stibal M, Gözdereliler E, Cameron KA, Box JE, Stevens IT, Gokul JK, Schostag M, Zarsky JD, Edwards A, Irvine-fynn TD and Jacobsen CS .2015. Microbial abundance in surface ice on the Greenland Ice
Sheet. Front. Microbiol. 6:225. doi:10.3389/fmicb.2015.00225

Sugden, J.C., Mott, P.G. 1940. Oxford University Greenland Expedition, 1938. Geographical Journal, 95: 43-51

Swann, L. 1992. The aeolian biome. Bioscience, 42 (4): 262-270

Takacs, C.D., Priscu, J.C. 1998. Bacterioplankton dynamics in the McMurdo Dry Valley lakes, Antarctica. Microbial Ecology, 36 (3): 239-250

Takeuchi, N. 2002. Optical characteristics of cryoconite (surface dust) on glaciers: the relationship between light absorbency and the property of organic matter contained in the cryoconite. Annals of Glaciology, 34: 409-414

Takeuchi, N. 2009. Temporal and spatial variations in spectral reflectance and characteristics of surface dust on Gulkana Glacier, Alaska Range. Journal of Glaciology, 55 (192): 701-709

Takeuchi, N., Kohshima, S., Fujita, K. 1998. Snow algae community on a Himalayan glacier, Glacier AX010 East Nepal: Relationship with glacier summer mass balance. Bulletin of Glacier Research, 16 (1998): 43-50

Takeuchi, N., Kohshima, Y., Seko, K., Fujita, K. 2000. Characteristics of cryoconite holes on a Himalayan glacier, Yala Glacier central Nepal. Bulletin of Glacioloical Research, 17: 51-59

Takeuchi, N., Kohshima, S., Goto-Azuma, K., Koerner, R.M. 2001a. Biological characteristics of dark coloured material (cryoconite) on Canadian Arctic glaciers (Devon and Penny ice caps). Mem. National Institute of Polar Research, Special Issue 54: 495-505

Takeuchi, N., Kohshima, S., Seko, K. 2001b. Structure, formation and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arctic, Antarctic and Alpine Research, 33 (2): 115-122

Takeuchi, N., Kohshima, S., Shiraiwa, T., Kubota, K. 2001c. Characteristics of cryoconite (surface dust on glaciers) and surface albedo of a Patagonian glacier, Tyndall Glacier, Southern Patagonia Icefield, Bulletin of Glaciological Research, 18, 65-69

Takeuchi, N., Li, Z. 2008. Characteristics of surface dust on Urumqi Glacier No.1 in the Tien Shan Mountains, China. Arctic, Antarctic and Alpine Research, 40 (4): 744-750

Takeuchi, N., Nishiyama, H., Li, Z. 2010. Structure and formation process of cryoconite granules on Urumqi glacier No.1, Tien Shan, China. Annals of Glaciology, 51 (56): 9-14

Takeuchi, N., Nagatsuka, N., Uetake, J., Shimada, R. 2014. Spatial variations in impurities (cryoconite) on glaciers in northwest Greenland. Bulletin of Glaciological Research, 32: 85-94

Tedesco, M., Foreman, C.M., Anton, J., Steiner, N., Schwartzmann, T. 2013. Comparative analysis of morphological, mineralogical and spectral properties of cryoconite in jakobshavn Isbrae, Greenland, and Canada Glacier, Antarctica. Annals of Glaciology, 54(63): 147-157

Telling, J., Anesio, A.M., Hawkings, J., Tranter, M., Wadham, J.L., Hodson, A.J., Irvine-Fynn, T.D.L., Yallop, M.L. 2010. Measuring rates of gross photosynthesis and net community production in cryoconite holes: a comparison of field methods. Annals of Glaciology, 51 (56): 135-144

Telling, J., Anesio, A.M., Tranter, M., Irvine-Fynn, T.D.L., Hodson, A., Butler, C., Wadham, J. 2011. Nitrogen fixation on Arctic glaciers, Svalbard. Journal of Geophysical Research, doi: 10.1029/2010JG001632

Telling, J., Stibal, M., Anesio, A.M., Tranter, M.L., Nias, I., Cook, J., Lis, G., Wadham, J.L., Sole, A., Nienow, P., Hodson, A.J. 2012a. Microbial nitrogen cycling on the Greenland Ice Sheet. Biogeosciences,

Telling, J., Anesio, A.M., Tranter, M., Stibal, M., Hawkings, J., Irvine-Fynn, T.D.I., Hodson, A., Butler, C., Yallop, M., Wadham, J. 2012b. Controls on the autochthonous production and respiration of organic matter in cryoconite holes on high Arctic glaciers. Journal of Geophysical Research, 117 (G01017)

Thacker, D.R., Babcock, H. 1957. The mass culture of algae. Journal of Solar Energy Science and Engineering, 1 (1): 37-50

Tranter, M., Brown, G., Raiswell, R., Sharp, M., Gurnell, A. 1993. A conceptual model of solute acquisition by Alpine glacial meltwaters. Journal of Glaciology, 39: 573-581

Tranter, M., Brown, G., Hodson, A., Gurnell, A., Sharp, M. 1994. Variations in the nitrate concentration of glacial runoff in Alpine and sub-Polar environments. Snow and ice covers: interactions with the atmosphere and ecosystems. In: Proceedings of Yokohama Symposia J2 and J5, July 1993. IAHS Publ. no. 423 (223): 299-311

Tranter, M., Fountain, A.G., Fritsen, C.H., Lyons, W.B., Priscu, J.C., Statham, P.J., Welch, K.A. 2004. Extreme hydrochemical conditions in natural microcosms entombed within Antarctic ice. Hydrological Processes, 18: 379-387

Tranter, M., Fountain, A.G., Lyons, W.B., Nylen, T.H., Welch, K.A. 2005. The chemical composition of runoff from Canada Glacier, Antarctica: implications for glacier hydrology during a cool summer. Annals of Glaciology, 40: 15-19

Tranter, M., Bagshaw, E.A., Fountain, A.G., Foreman, C.M. 2010. The biogeochemistry and hydrology of McMurdo Dry Valley glaciers: Is there life on Martian ice now? In Doran, P.T. (ed), Life in Antarctic deserts and other cold, dry environments: Astrobiological analogues. Cambridge: Cambridge University press, 195 – 220

Uetake, J., Naganuma, T., Hebsgaard, M.B., Kanda, H., Kohshima, S. 2010. Communities of algae and cyanobacteria on glaciers in west Greenland. Polar Science, 4: 71-80

Van der Hage, H.H. 1992. Interpretation of field measurements made with a portable albedometer. Journal of Atmospheric and Oceanic Technology, 9: 420-425

Vincent, W.F. 1988. Microbial assemblages of Antarctica. Studies in Polar Research, Cambridge University press, Cambridge. Pp304

Vincent, W.F., Howard-Williams, C. 1994. Nitrate rich inland waters of the Ross Ice Shelf region, Antarctica, Antarctic Science, 6: 339-346

Vincent, W.F., Quesada, A. 1997. Microbial niches in the polar environment and the escape from UV radiation in non-marine habitats. In. Battaglia, B., Valencia, J., Walton, D. (eds): Antarctic Communities: Species, structure and survival. Cambridge university Press, Cambridge: 388-395

Vincent, W.F., Howard-Williams, C. 2000. Letters: Life on Snowball Earth. Science, 287: 2421

Vincent, W.F., Gibson, J.A.E., Pienitz, R., Villenueve, V. 2000. Ice shelf microbial ecosystems in the high arctic and implications for life on Snowball Earth’ Naturwissenschaften, 87:137-141

Vincent, W.F. 2007. Cold tolerance in cyanobacteria and life in the cryosphere. In: Seckbach, J (ed) Algae and cyanobacteria in extreme environments. Springer

Wagner, A. 1938. Zur entstehung von kryokonitlochern. Zeitschrift fur Gletscherkunde, 26 (1-2): 129-137

Warren, S.G. 1982. Optical properties of snow. Review of Geophysics and Space Physics, 20: 67-89

Warren, S.G., Wiscombe, W.J. 1980. A model for the spectral albedo of snow. II. Snow containing atmospheric aerosols. Journal of Atmospheric Science, 37: 2734-2745

Wegener, A. 1930. Deutsche inlandeis-expedition nach Gronland sommer 1929. Z. Ges. Erdkunde, 64: 810124

Wentworth, S.J., Gibson, E.K., Velbel, M.A., McKay, D.S. 2005. Antarctica dry valleys and indigenous weathering in mars meteorites: implications for water and life on Mars. Icarus, 174 (2): 383-395

Wei, Y., Tandong, Y., Baiqing, X., Hang, Z. 2010. Influence of supraglacial debris on summer ablation and mass balance in the 24K glacier, South-East Tibetan Plateau. Geografiska Annaler, 92 (3): 353-360

Wharton, R.A., Vinyard, W.C. 1983. Distribution of snow and ice algae in North America. Madrono, 30: 201-209

Wharton, R.A., Vinyard, W.C., Parker, B.C., Simmons, G.M., Seaburg, K.G. 1981. Algae in cryoconite holes on Canada glacier in southern Victoria Land, Antarctica. Phycologia, 20: 208-211

Whittrock, V.B. 1885. Ueber die Scnee- und Eisflora, besonders in den arktischen Gegenden. Nebst einem Anhang Ueber die Schnee- und Eisfauna. In A.E. Nordenskiold: Studien un Firschungen veranlasst durch meine Reisen im hohen Norden. Rockhaus, Leipzig: 65-119

Wientjes, I.G.M., Van de Wal, R.S.W., Reichart, G.J., Sluijs, A., Oerlemans, J. 2011. Dust from the dark region in the western ablation zone of the Greenland ice sheet. The Cryosphere, 5: 589-601

Wilhelm, L., Singer, G.A., Fasching, C., Battin, T.J., Besemer, K. 2013. Microbial biodiversity in glacier-fed streams. ISME Journal, 7: 1651 – 1660

Willerslev, E., Hansen, A.J., Christensen, B., Steffensen, J.P., Arctander. P. 1999. Diversity of Holocene life forms in fossil glacier ice. Proc. Natl. Acad. Sci., 96:8017-8021

Xu, Y., Simpson, A.J., Eyles, N., Simpson, M.J. 2009. Sources and molecular composition of cryoconite organic matter from the Athabasca Glacier, Canadian Rocky Mountains. Organic Geochemistry 41: 177-186.

Yallop, M.L., Anesio, A.J., Perkins, R.G., Cook, J., Telling, J., Fagan, D., MacFarlane, J., Stibal, M., Barker, G., Bellas, C., Hodson, A., Tranter, M., Wadham, J., Roberts, N.W. 2012. Photophysiology and albedo-changing potential of the ice-algal community on the surface of the Greenland ice sheet. ISME Journal, 6: 2302 – 2313

Yoshimura, Y., Kohshima, S., Ohtani, S. 1997. A community of snow algae on a Himalayan glacier: change of algal biomass and community structure with altitude. Arctic and Alpine Research, 29: 126-137

Zarsky, J.D., Stibal, M., Hodson, A., Sattler, B., Schostag, M., Hansen, L., Jacobsen, C.S., Psenner, R. 2013. Large cryoconite aggregates on a Svalbard glacier support a diverse microbial community including ammonia-oxidising archaea. Environmental Research Letters, 8 (035044): 11pp

Zawierucha, K., Coulson, S., Michalcyzk., Kaczmarek, L. 2013. Current knowledge of the Tardigrada of Svalbard with the first records of water bears from Nordaustlandet (High Arctic). Polar Research, 32: 20886

Zhanga, S., Houb, S., Yanga, G., Wang, J. 2010. Bacterial community in the East Rongbuk Glacier,
Mt. Qomolangma (Everest) by culture and culture-independent methods. Microbiological Research 165 (2010) 336—345