New AGU paper: Microbes change the colour and chemistry of Antarctic snow

In recent decades there has been a significant increase in snow melt on the Antarctic Peninsula and therefore more ‘wet snow’ containing liquid water. This wet snow is a microbial habitat In our new paper, we show that distance from the sea controls microbial abundance and diversity. Near the coast, rock debris and marine fauna fertilize the snow with nutrients allowing striking algal blooms of red and green to develop, which alter the absorption of visible light in the snowpack. This happens to a lesser extent further inland where there is less fertilization.

hod_bgfig2
Figure showing the location of the field sites on the Antarctic Peninsula at two scales (A/B), plus close up views of the red snow algal patches (C/D).

A particularly interesting finding is that the absorption of visible light by carotenoid pigments has greatest influence at the surface of the snow pack whereas chlorophyll is most influential beneath the surface. Higher concentrations of dissolved inorganic carbon and carbon dioxde were measured in interstitial air near the coast compared to inland and a close association was found between chlorophyll and dissolved organic carbon. These observations suggest in situ production of carbon that can support more diverse microbial life, including species originating in nearby terrestrial and marine habitats.

hod_bgfig
Reflected light from clean snow, snow with green algae and snow with red algae.

 

These observations will help to predict microbial processes including carbon exchange between snow, atmosphere, ocean and soils occurring in the fastest-warming part of the Antarctic, where snowmelt has already doubled since the mid-twentieth century and is expected to double again by 2050.

 

Advertisements

New TCD paper: Dark ice on Greenland Ice Sheet

Our new discussion paper, led by Black and Bloom PDRA Andrew Tedstone, examines in detail why there is a stripe of dark, fast-melting ice on the Greenland Ice Sheet, particularly in the south-west. This ‘dark zone’ is clearly visible in satellite imagery of the Greenland Ice Sheet and is important because darker ice melts faster. It is crucial to understand what causes the ice to be dark there because if it grows or darkens in a warming climate then we can expect the deglaciation of Greenland to accelerate more than is currently predicted. There are two main competing hypotheses that could explain the presence of the dark zone: 1) dust melting out from ancient ice is darkening the ice; 2) algae are growing on the ice sheet and changing its colour.

dsc01006
An aerial view of the Black and Bloom Camp at S6 (Greenland Ice Sheet) in 2016, in the heart of the ‘dark zone’.

The paper shows that the dark zone changes its shape, size and duration each year. This appears to be most strongly controlled by the sensible heat flux (air temperature) between June and August, number of days with air temperatures above zero, and timing of the snow-line retreat.

darkice
This figure from the paper shows the extent of the dark zone between June and August each year between 2000 – 2016.

These findings provide some insights into which surface processes are most likely to explain the dynamics of the dark zone. The spatial distribution of the dark ice is best explained by the melting out of dust particles from ancient ice, although these particles are not dark enough to explain the colour change of the dark zone. However, these dusts may be crucial nutrients and substrates for ice algae, suggesting that the dusts control where the dark zone is, and the algae determine how dark it gets. Our other recent TCD paper showed how algae can darken ice and snow; however, there are also meteorological conditions required for algal growth including sufficient sunlight and liquid water. We suggest in the paper that the most likely hypothesis is that dust melts out from ancient ice and stimulates the growth of algae when meteorology allows it. Algae need the dust to grow, and the dust is not dark without the algae.