Storm at Camp Bloom

Summer 2017 seriously challenged the idea that summer in SW Greenland has a reliably stable, clear, dry meteorology. Our field work was characterized by unpredictable swings between weather extremes from blizzards dropping 1ft of snow in an evening to bright sunshine and low wind, to rain and tens of centimeters of surface lowering in a few hours. Most of this was inconsequential and actually scientifically very interesting since we experienced what would normally be a year’s worth of surface change in a few weeks. However, we did have to deal with a particularly vicious couple of days of unexpected storm… Here are the notes from my field diary…

Unseasonal snow early in the trip (ph. J Cook)

19th July:

Wind steadily increased through afternoon with frequent periods of heavy rain. No real work got done b/c too windy for drones and spectrometer needs to stay dry. As dinner time approached winds continued to strengthen. Tedstone cooked a killer dahl while Stefan and I redrilled the stakes holding down all the tents and added extra guy lines to the mess on the windward side. Side of mess pushing in towards middle of mess during dinner. The fabric was looking a bit delicate and the flex in the tent wall was knocking things off the cooking table – boxes and stove etc gradually moved into the middle of the tent over about an hour as we ate. Downloaded data from AWS – winds averaging 48 kmph with much stronger gusts. Getting a little concerned about the longevity of the mess.

Early on in the evening, adding guy lines to the windward wall of the mess tent (ph. A Tedstone)


By 2300 the mess was pressing in and becoming quite concave during stronger gusts. Avoided going outside because of rain, but some tent maintenance was now essential. Intense surface lowering around the ply under the mess has caused poles to float in space – tent not so geodesic now! To try to counter this, poles on opposite sides of the tent were tied together with accessory cord to try to maintain dome shape. Outside tent, tags were tied up to the fly sheet to try to stop poles coming out. Predict chance of mess tent survival 40%, so all contents packed down into Zarges boxes and/or tied down, gas disconnected from stove, electrics and batteries dry-bagged and stored. Essentials moved to personal tents or stashed in dry bags for moving later.

The mess tent starting to get badly misshapen at about 2130 (ph. J Cook)

Tedstone went to bed, but almost immediately came back with ‘bad feeling’… Bang on. On cue, a strong gust ripped the tent fabric on the windward side, which was now bending inwards to touch the plyboard floor in the centre of the tent. Now no chance of maintaining tent shape. We evacuated the tent, thankfully the rain had died down, and watched the tent collapse inwards. Seeing poles bending and breaking, we pulled as many as possible out of their tags to allow them to flop safely downwards rather than pinging dangerously as they or the fabric snapped under tension. Zarges boxes pulled onto the edges of the fabric to stop tent flying away entirely.

The collapsed mess tent at about 0200 (ph J Cook)

Now early morning and personal tents also looking in poor condition, with surface lowering causing stakes to bob uselessly in shallow drill holes and strong winds bending the tents out of shape. No sign of storm passing –  front after front lining up on horizon and winds only getting stronger. Tom and Stefan looking very cold, so sent to their tents to get warm. Buddy system established: in event of any problems with personal tents, warmth etc Tom would get into my tent and vice versa, and the same for Andrew and Stefan. Tedstone and I extracted the drill and flights from the wrecked mess and redrilled holes to stake down all of the personal tents. Agreed that if one personal tent goes down, we call in search and rescue. Rationale was that once a personal tent goes, the others will follow and we then have no shelter. With no sign of storm abating the risk of exposure and hypothermia was not justifiable. However, both know chances of heli getting here soon are slim. No panic yet – personal tents standing up OK and everyone dry and warm. At 0120, Tedstone and I went to our personal tents with agreement to reconvene and check all tents again in 2 hours, and also call back to the UK for up to date forecast.

0330 Reconvened with Tedstone – tents looking ok but storm still raging. Called Martyn (project PI) on satellite phone to ask for urgent weather forecast. Text response indicated clear weather after this storm, but could be a further 6-8 hours. Still satisfied with safety of personal tents, so 0430 back to tent to sleep with agreement to meet at 0730.

0730 Reconvene with Tedstone. Storm still strong and still looks heavy all the way to horizon. Back to tents to sit it out. Tried to snooze.

1000 Fetch stove and emergency dehy food from wrecked mess tent and cooked in porch of my personal tent. Tedstone delivered very odd breakfasts to very hungry researchers in their tents. Personal tents now looking ropey, so agreed to sit out until next break in rain, then repitch. 4 hours until next break in weather. By this time calmer weather was on the way. Cooked a second dehy meal for team and waited another 2 hours. Rain stopped and wind calmed through day. Once manageable, wrecked mess was packed down and entire camp rebuilt. No science done today!



On the ice with the BBC

The BBC Science team joined us for our first twenty-four hours on the ice this year, documented our work on algal darkening of the Greenland Ice Sheet. This started in the dusty town of Kangerlussuaq, where I took David Shukman, Kate Stephens and Jonathon Sumberg out to Russell Glacier. There, while I flew the drone to get aerial shots for the news broadcasts, the team did their ‘to camera’ pieces and filmed the melt pouring off out out of the glacier’s calving front. Here’s one of the short UAV clips showing the dramatic front of Russell.

The next morning it was onto the ice. We worked as quickly as possible to get a camp established, including the mess tent, personal tents, equipment cage and toilet. The BBC team filmed their on location pieces and Andrew and I flew the various UAVs and set up the science kit to demonstrate the measurements we’d be taking after the film team were gone. We all gave our interviews which were used for the 6 O’clock and 10 O’clock Evening News, the Morning News, Radio 4 and BBC On Demand. I also recorded a more light-hearted interview about living on the ice sheet which is linked to in the online news article.

Here’s the online article:

and the Radio 4 show:

The next morning the team packed up and shipped out back to dry land, leaving four of us (me, Andrew Tedstone, Stefan Hofer and Tom Gribbin) on the ice to start making our measurements of surface reflectance and algal growth. The picture below shows our camp from the air, looking roughly west.


One of our team, Tom Gribbin, also made this short film about the season using his GoPro camera.

Bioalbedo: new model and TCD paper

I’m very pleased to report our new paper is now in open discussion in The Cryosphere. The paper presents a new model for predicting the spectral bioalbedo of snow and ice, which confirms that ice algae on ice surfaces can change its colour and by doing so enhance its melt rate (“bioalbedo”). We also used the model to critique the techniques used to measure bioalbedo in the field. The model is based on the SNow ICe and Atmosphere Radiative model (SNICAR), but adapted to interface with a mixing model for pigments in algal cells. We refer to the coupled models as BioSNICAR.

The darkening effect of algal growth (bioalbedo) in the visible wavelengths can be seen in this UAV image of our 2016 field camp at S6 on the Greenland Ice Sheet

The model uses Mie theory to work out the optical properties of individual algal cells with refractive indices calculated using a pigment mixing model. The user can decide how much of each pigment the cell contains, the cell size, the biomass concentration in each of n vertical layers, the snow/ice optical properties, angle and spectral distribution of incoming sunlight and the mass concentration, optical properties and distribution of inorganic impurities including mineral dusts and black carbon (soot). From this information, the model predicts the albedo of the surface for each wavelength in the solar spectrum. This can then be used to inform an energy balance model to see how much melt results from changes to any of the input values, including growth or pigmentation of algae.

This figure shows the effect of algal cells with different pigmentation on spectral albedo of snow/ice. In A) the cells have 1.5% chlorophyll a and 10% photoprotective carotenoids, B) 1.5% chlorophyll a and 5% photoprotective carotenoids, C) 1.5% chlorophyll a and 1% photoprotective carotenoids and D) 1.5% chlorophyll a only. These percentages are % total cell dry mass. The biomass is shown in the legend, which applies to all four subplots.


The model shows that smaller cells with photoprotective pigments have the greatest albedo-reducing effect. The model experiments suggest that in most cases algal cells have a greater albedo-reducing effect than mineral dusts (depending upon optical properties) but less than soot.


A) An equal biomass concentration with varying vertical distribution in the snow/ice; B) mineral dusts in varying mass concentrations doing a good job of recreating the ‘red-edge’ (see previous post); ) mineral dusts obscuring the spectral signature of algal cells; D) the effect of water in interstitial pore spaces. Ice grains are 1000 microns in diameter and the legend refers to the thickness of liquid water coating around the grains (microns). Note the shift of the absorption feature centred at 1030 nm towards shorter wavelengths when more water is present.


As well as making predictions about albedo change, the modelling is useful for designing field experiments, as it can quantify the error resulting from certain practises, such as using devices with limited wavelength ranges, or neglecting to characterise the vertical distribution of cells. I’ll cover this in some further posts. The most important thing is metadata collection, since standardising this enables the measurement conditions to be as transparent as possible and encourages complementarity between different projects. Importantly, following a protocol for albedo measurements and collecting sufficient metadata will make it easier to couple ground measurements to satellite data. We outline two key procedures: hemispheric albedo measurement, and hemispherical-conical reflectance factor measurement. To accompany the discussion in our paper, we’ve produced some metadata collection sheets that might be useful to other researchers making albedo measurements in the field (download here: metadata sheets) and made our code and data available in an open repository.

Weston Park Museum: Everyday Wonders

The Western Park Museum recently got in touch to talk about their excellent Arctic World exhibition. I know the museum well as it is a two-minute stroll across the park from my office in Sheffield, so I was really pleased to offer some thoughts. The idea was to produce a new book (‘Everyday Wonders: 50 objects from Weston Park Museum’) that gives a whistle-stop journey through the museum, stopping by at 50 of the most iconic and interesting artifacts on display. I was asked to comment on Snowy, the polar bear – the centre-piece of the Arctic World exhibition. A photo of my contribution to the book is below, but I encourage anyone who is interested to visit the museum and perhaps purchase a copy for themselves.


The Musueum can be found at:


Video: Alive and Well: Microbes Add to Melting of Greenland Ice Sheet

Peter Sinclair and Yale Climate Connections have released an excellent video detailing the role of microbial life in driving Greenland Ice Sheet melt, featuring several researchers from the Dark Snow Project and Black and Bloom. We were lucky enough to have Peter with us for a couple of days at the beginning of our trip in 2016.

Svalbard UAV: Lessons learned


Here are a few things I learned after ten days of field testing the UAV multispectral data acquisition in Svalbard…

Video showing take off in stabilize mode, switch to loiter mode at about 5 m, quick control test then into automatic mission. 

1. The UAV is surprisingly robust.

The aircraft was transported to the sites on a sled on the back of a snowmobile, hitting sastrugi and general lumps and bumps in the landscape, was hold baggage on three flights, launched and landed in snow, flown in winds and operated at temperatures down to -25 degrees. It is still is perfect working order and flew every mission without issue. I’m now pretty confident in the flight case and arrangement of kit inside, and trust that there won’t be significant flight issues in Greenland in summer.

2. Very low temperatures rapidly deplete the LiPo batteries

One noticeable, and unsurprising, effect of flying in these conditions was that the battry ran down very quickly. The toughest day was about -19 but with strong winds, and we only managed a 2.5 minute automated flight before the battery voltage dropped low enough for me to get twitchy and land the UAV manually.

Taking off on a particularly cold flight, near Telbreen, Svalbard

3. A dGPS and ground control points will be essential for ground truthing the UAV imagery 

It was impossible to accurately pinpoint ground sampling locations using handheld GPS and ground feature ID. This was especially true in Svalbard because of the homogenous snow cover, but will also be an issue in Greenland in the summer. This is not really surprising, but the need for an accurate dGPS location lock has been reinforced by the test flights.

4. The workflow for geotagging multispectral images using Photoscan is not as straightforward as I originally thought. 

The red-edge camera does not output GeoTIFFs – they have to be postprocessed with ground control point data before they can be stacked and aligned. This is not a big problem, but good to know in advance of summer data collection.

5. New landing gear needed

The three-leg solution currently used on the UAV is better than I expected, but there is still the real problem that the legs sink into soft ground (e.g. snow) which risks pushing the camera lenses and the internal electronics into the snow. This could scratch the lenses or soak the electronics when the snow melts. Also, with the current model, a problem with any one of the three legs compromises the whole UAV because it becomes impossible to land flat. I’m going to develop something new before Greenland.

Video showing manual landing on a patch of compacted snow after an auto mission. It would be more stable on soft ground with a skid-type landing gear rather than the three legs. Includes heckling by Tedstone…!

6. Some a priori knowledge of image area can be useful

High resolution imagery is not available for all locations – for some of our field sites there was not sufficient google earth coverage to orient ourselves or draw a polygon by eye in Mission Planner.  It is possible to estimate using the compass and the map scale, but with some existing knowledge of the GPS coordinates of the grid perimeter would help to plan an accurate mission.

7. It’s amazing how small the UAV looks, even when flying quite close by

Even flying the UAV at 30 or 40 m elevation, it quickly becomes difficult to keep track of its orientation when it flies a hundred metres or so on a mission. This does have implications for the length of mission I’d be comfortable flying, since I want to be able to rescue it manually if there are any GPS or autopilot issues – maybe I’m soft but my comfortable range is less than the CAA ‘dronecode’ distance limits- even though these do not currently apply in Svalbard/Greenland. Of course, the conditions (esp. visibility) affect what feels comfortable.

8. The controller is awkward in gloves

At -25 C gloves were pretty essential, but it is also difficult to have fine control over the switches and sticks on the controller. I was flying in a very thin pair of gloves or gloveless, which meant my fingers quickly went numb, especially when there was any wind. This will be less of a problem in Greenland in summer, but I will still get some warmer, thinner gloves with rubber finger pads to help with the UAV control in the cold.

9. Pre-flight checklists are invaluable

It’s so easy to overlook or forget something in harsh conditions or when rushed or excited. The written checklists developed before we went out to Svalbard were extremely useful for making sure everything went smoothly. These are a condition of CAA compliant flights in the UK and our experience in Svalbard demonstrates why! I will probably add a few additional checks or reorder a few things before our Greenland deployment – site specific things like take off and landing zone preparation (in Svalbard it was often a compacted snow platform, in Greenland I intend to use plyboard to avoid melt ponds and cryoconite holes).

One of the field sites at Reiperbreen, Svalbard